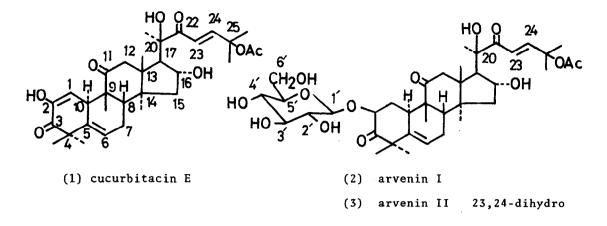
Tetrahedron Letters No. 24, pp 2099 - 2102, 1977. Pergamon Press. Printed in Great Britain.

STRUCTURES OF ARVENIN I AND II, BITTER PRINCIPLES FROM <u>ANAGALLIS</u> ARVENSIS L. (PRIMULACEAE). NEW CUCURBITACIN GLUCOSIDES

Yasuji Yamada*, Kiyokazu Hagiwara and Kazuo Iguchi

Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

Sukeji Suzuki


Tokyo Metropolitan Research Laboratory of Public Health, Hyakunincho, Shinjuku, Tokyo 160, Japan

(Received in Japan 19 April 1977; received in UK for publication 5 May 1977)

Cucurbitacin glycosides have been received attention owing to their biological activity. Kupchan et al.¹⁾ determined the structure of datiscoside having antileukemic property by X-ray crystallographic analysis. In the course of our investigation on the chemical constituents of <u>Anagallis arvensis</u> L. (Primulaceae), which is used as a herb in Taiwan, two bitter principles, named arvenin I and II, new cucurbitacin glucosides have been isolated from the methanol extract. Now we wish to describe the structure elucidation of arvenin I and II using mainly ¹³C NMR spectra. Although ¹³C NMR spectra have been recognized to be useful for the structural studies of terpenoids²⁾, applications to the field of terpenoid glycosides have been limited³⁾.

The ethyl acetate insoluble part of the methanol extract, upon successive charcoal chromatography (elution with methanol) and silica gel chromatography [elution with ethyl acetate (saturated with water) : methanol (100:1)], gave arvenin I [m.p. 141-146°C, $[\alpha]_D^{20}$ +40.6(c 1.6, EtOH), $C_{38}H_{56}O_{13}$, UV(EtOH) 228 nm(ϵ 10,900), ¹H NMR(CDCl₃) δ 0.96(3H,s), 1.06(3H,s), 1.28(6H,s), 1.35(3H,s), 1.45(3H,s), 1.56(6H,s), 2.03(3H,s,OAc), 6.55(1H,d,J=16 Hz,C₂₃-H) and 7.05(1H, d,J=16 Hz,C₂₄-H) ppm], and arvenin II [m.p. 140-143°C, $[\alpha]_D^{20}$ +31.7(c 1.2,EtOH), $C_{38}H_{58}O_{13}$, UV(EtOH) end absorption, ¹H NMR(CDCl₃) δ 0.98(3H,s), 1.08(3H,s), 1.34(6H,s), 1.47(12H,s) and 1.99(3H,s,OAc) ppm]. The ethyl acetate soluble

part of the methanol extract gave cucurbitacin $E^{4)}$ (1) by repeated silica gel chromatography.

The 13 C NMR spectra of cucurbitacin E, arvenin I and arvenin II were examined. Signal assignments of cucurbitacin E were performed by means of chemical shift rules⁵⁾ and ¹H single frequency off-resonance decoupling experiments, and the results are shown in the Table. Signals of both arvenin I and II are also summarized in the Table as compared with those of cucurbitacin E. The signals attributable to the aglycone of arvenin I were closely related to those of cucurbitacin E, except for the signals underlined in the Table, indicating that arvenin I contained the cucurbitacin carbon skeleton. The remarkably higher shifts of C-1 and C-2 signals together with the lower shift of C-3 signal in arvenin I compared with those of cucurbitacin E, end the aglycone of arvenin I was a 1,2-dihydro derivative of cucurbitacin E, while the reason of a shift at C-5 position was not clear.

Although the same 13 C chemical shift for the C-20 and C-25 carbons was observed in both cucurbitacin E (79.7 ppm) and arvenin I (79.8 ppm), respectively, the acetoxyl group at C-25 was evidenced by the characteristic lower 1 H chemical shift⁶⁾ [1.56(6H,s) ppm] for the geminal dimethyl groups at C-25 in arvenin I comparable to that of cucurbitacin E.

 13 C NMR spectrum provided also satisfactory informations on the sugar moiety of arvenin I. By comparison of the 13 C chemical shifts of the sugar moiety with those of several glucopyranosides⁸⁾, arvenin I apparently contains

Carbon	(1)	(2)	(3)	Carbon	(1)	(2)	(3)
C-1	115.8	34.4	34.3				
2	147.2	78.2	78.1		18.5	18.9	18.8
3	198.7	<u>211.3</u>	211.1		20.2	19.9	19.9
4	48.6	48.5	48.6		20.5	20.4	20.1
5	137.9	140.8	140.7				
6	120.6	120.4	120.4	сн _з	20.7	20.4	21.7
7	24.0 ^b	24.2 ^b	24.2 ^b		21.7	21.8	22.2
8	35.3	35.0	35.4		25.4	25.3	25.5
9	48.6	48.9	48.9				
10	42.3	42.9	42.8		26.3	26.3	26.0
11	213.5	212.7	212.6		26.6	26.6	26.0
12	49.4 ^b	49.1 ^b	49.1 ^b		28.1	28.7	28.7
13	49.4 ^C	51.0 ^C	50.8 ^C		2011	2011	20.7
14	51.0 ^C	51.5 ^C	51,5 ^C		- · · · · · · · · · · · · · · · · · · ·		
15	46.6 ^b	46.1 ^b	46.0 ^b				
16	70.9	70.8	70.4	1'		104.0	103.9
17	59.7	59.6	58.9	2'		75.6	75.5
20	79.7	79.8	80.0				
22	204.1	204.0	214.7	Glc ^{3'}		78.2	78.1
23	122.6	122.5	49.3	4'		71.4	71.4
24	150.1	150.0	32.1	5'		78.2	78.1
25	79.7	79.8	81.7	-			
о <u>с</u> осн _з	169.7	169.7	170.0	6'		62.6	62.6

Table. ¹³C Chemical Shifts^a of Cucurbitacin E (1), Arvenin I (2) and Arvenin II (3)

a 13 C-NMR spectra were taken with Varian NV-14 spectrometer (15.1 MHz) at 51-2°C in C_5D_5N with TMS as an internal reference using 5 mm tubes.

b,c Assignments may be reversed in each vertical column.

one glucose, and the unusual low field shift at C-2 (78.2 ppm), which was caused by glucosidation shifts^{8,9)}, indicated obviously that glucose linked with the hydroxyl group at C-2 position, while the glucosidation shifts were not observed for the other carbons (C-16 and C-20) bearing a hydroxyl group.

Stereochemistry at C-2 and C-20 positions was confirmed by the fact that acid-catalyzed hydrolysis of arvenin I gave D-glucose and cucurbitacin $D^{(1)}$ (m.p. 142-143°C), as detectable products, which was formed by the simul-

taneous hydrolysis of the acetoxyl group at C-25 of the aglycone,1,2-dihydrocucurbitacin E*. Furthermore stereochemistry of the anomeric position of glucose was assigned to be β by comparison of the ¹³C chemical shift of the anomeric carbon (104.0 ppm) to those of related \heartsuit - and β -glucopyranosides^{8,9}. From these results, the structure of arvenin I was unambiguously represented to be 2-0- β -D-glucopyranosyl cucurbitacin B (2).

Hydrogenation of arvenin I over Pd-C afforded arvenin II, indicating that the latter compound was a dihydro derivative of arvenin I. The 13 C NMR spectrum of arvenin II are extremely related to those of arvenin I as shown in the Table, except for the side chain signals underlined by a dotted line leading to the structure of arvenin II to be 2-0- β -D-glucopyranosyl 23,24-dihydrocucurbitacin B (3).

REFERENCES

- S.M.Kupchan, C.W.Sigel, L.J.Guttman, R.J.Restivo and R.F.Bryan, J.Amer.Chem.Soc., <u>94</u>, 1353(1972).
- 2. Recent examples are as follows:
- a) I.Kobo, Y.W.Lee, V.Balogh-Nair, K.Nakanishi and A.Chapya, J.C.S.Chem.Comm., 949(1976).
- b) K.Tori, Y.Yoshimura, S.Seo, K.Sakurawi, Y.Tomita and H.Ishii, Tetrahedron Letters, 4163(1976).
- c) M.Leboeuf, M.Hamonnière and A.Cavé, Tetrahedron Letters, 3559(1976).
- K.Yamasaki, H.Kohda, T.Kobayashi, R.Kasai and O.Tanaka, Tetrahedron Letters, 1005(1976);
 K.Tori, S.Seo, Y.Yoshimura, M.Nakamura, Y.Tomita and H.Ishii, Tetrahedron Letters, 4167(1976).
- 4. D.Lavie and S.Szinai, J.Amer.Chem.Soc., 80, 707(1958).
- 5. J.B.Stothers, " Carbon-13 NMR Spectroscopy ", Academic Press, New York (1972).
- 6. D.Lavie, B.S.Benjaminov and Y.Shvo, Tetrahedron, 20, 2585(1964).
- W.T.de Kock, P.R.Enslin, K.B.Norton, D.H.R.Barton, B.Sklarz and A.A.Bothner-By, J.Chem.Soc., 3828(1963).
- 8. R.Kasai, M.Suzuo, J.Asakawa and O.Tanaka, Tetrahedron Letters, 175(1977).
- 9. K.Tori, S.Seo, Y.Yoshimura, H.Arita and Y.Tomita, Tetrahedron Letters, 179(1977).

^{1,2-}Dihydrocucurbitacin E is same as cucurbitacin B⁷⁾.